Usando o MATLAB, como posso encontrar a média móvel de 3 dias de uma coluna específica de uma matriz e acrescentar a média móvel a essa matriz, estou tentando calcular a média móvel de 3 dias de baixo para o topo da matriz. Eu forneci o meu código: Dada a seguinte matriz a e máscara: tentei implementar o comando conv, mas recebo um erro. Aqui está o comando conv que eu tentei usar na 2ª coluna da matriz a: A saída que eu desejo é dada na seguinte matriz: Se você tiver alguma sugestão, eu apreciaria muito. Obrigado Para a coluna 2 da matriz a, eu estou informando a média móvel de 3 dias da seguinte forma e colocando o resultado na coluna 4 da matriz a (I renomeou a matriz a como 39desiredOutput39 apenas para ilustração). A média de 3 dias de 17, 14 e 11 é de 14 a média de 3 dias de 14, 11, 8 é 11, a média de 3 dias de 11, 8, 5 é de 8 e a média de 3 dias de 8, 5, 2 é 5. Não há valor nas 2 linhas inferiores para a 4ª coluna porque a computação para a média móvel de 3 dias começa na parte inferior. A saída 39valid39 não será mostrada até pelo menos 17, 14 e 11. Espero que isso faça sentido ndash Aaron 12 de junho 13 às 1:28 Em geral, isso ajudaria se você mostrar o erro. Neste caso, você está fazendo duas coisas erradas: primeiro sua convolução precisa ser dividida por três (ou o comprimento da média móvel) Em segundo lugar, observe o tamanho de c. Você não pode simplesmente se encaixar em c. A maneira típica de obter uma média móvel seria usar o mesmo: mas isso não se parece com o que você deseja. Em vez disso, você é obrigado a usar algumas linhas: Resposta de freqüência do Filtro Médico de Corrente A resposta de freqüência de um sistema de LTI é a DTFT da resposta de impulso. A resposta de impulso de uma média móvel em L é como sendo o filtro médio móvel. FIR, a resposta de freqüência reduz-se à soma finita. Podemos usar a identidade muito útil para escrever a resposta de freqüência como onde nós deixamos ae menos jomega. N 0 e M L menos 1. Podemos estar interessados na magnitude desta função, a fim de determinar quais frequências obtêm o filtro desatualizado e atenuados. Abaixo está um gráfico da magnitude desta função para L 4 (vermelho), 8 (verde) e 16 (azul). O eixo horizontal varia de zero a pi radianes por amostra. Observe que em todos os três casos, a resposta de freqüência possui uma característica de passagem baixa. Um componente constante (zero freqüência) na entrada passa pelo filtro desatualizado. Certas frequências mais altas, como pi 2, são completamente eliminadas pelo filtro. No entanto, se a intenção era projetar um filtro de passagem baixa, então não fizemos muito bem. Algumas das freqüências mais altas são atenuadas apenas por um fator de cerca de 110 (para a média móvel de 16 pontos) ou 13 (para a média móvel de quatro pontos). Nós podemos fazer muito melhor do que isso. O argumento acima foi criado pelo seguinte código Matlab: omega 0: pi400: pi H4 (14) (1-exp (-maome4)). (1-exp (-iomega)) H8 (18) (1-exp (- Iomega8)). (1-exp (-iomega)) H16 (116) (1-exp (-iomega16)). (1-exp (-iomega)) trama (omega, abs (H4) abs (H8) abs ( H16)) eixo (0, pi, 0, 1) Copyright copy 2000- - Universidade da Califórnia, BerkeleyMoving Filtro Médico (filtro MA) Carregando. O filtro de média móvel é um filtro Low Pass FIR (Finite Impulse Response) simples comumente usado para suavizar uma série de datasigns amostrados. Demora M amostras de entrada por vez e leva a média dessas M-samples e produz um único ponto de saída. É uma estrutura de LPF (Low Pass Filter) muito simples que é útil para cientistas e engenheiros para filtrar o componente ruidoso indesejado dos dados pretendidos. À medida que o comprimento do filtro aumenta (o parâmetro M), a suavidade da saída aumenta, enquanto que as transições afiadas nos dados são tornadas cada vez mais contundentes. Isso implica que este filtro possui uma excelente resposta ao domínio do tempo, mas uma resposta de freqüência fraca. O filtro MA executa três funções importantes: 1) Demora os pontos de entrada M, calcula a média desses pontos M e produz um único ponto de saída 2) Devido aos cálculos de computação envolvidos. O filtro introduz uma quantidade definida de atraso 3) O filtro atua como um filtro de passagem baixa (com resposta de domínio de freqüência fraca e uma resposta de domínio de tempo bom). Código Matlab: O código matlab seguinte simula a resposta do domínio do tempo de um filtro M-point Moving Average e também faz a resposta de freqüência para vários comprimentos de filtro. Resposta de Domínio de Tempo: no primeiro gráfico, temos a entrada que está entrando no filtro de média móvel. A entrada é barulhenta e nosso objetivo é reduzir o ruído. A próxima figura é a resposta de saída de um filtro de média móvel de 3 pontos. Pode deduzir-se da figura que o filtro de 3 pontos de média móvel não fez muito na filtragem do ruído. Aumentamos os toques de filtro para 51 pontos e podemos ver que o ruído na saída reduziu muito, o que é retratado na próxima figura. Aumentamos as torneiras até 101 e 501 e podemos observar que mesmo - embora o ruído seja quase zero, as transições são apagadas drasticamente (observe a inclinação de cada lado do sinal e compare-os com a transição ideal da parede de tijolos em Nossa contribuição). Resposta de frequência: a partir da resposta de freqüência, pode-se afirmar que o roll-off é muito lento ea atenuação da faixa de parada não é boa. Dada esta atenuação da faixa de parada, claramente, o filtro de média móvel não pode separar uma faixa de freqüências de outra. Como sabemos que um bom desempenho no domínio do tempo resulta em desempenho fraco no domínio da freqüência e vice-versa. Em suma, a média móvel é um filtro de suavização excepcionalmente bom (a ação no domínio do tempo), mas um filtro de passagem baixa excepcionalmente ruim (a ação no domínio da freqüência) Links externos: livros recomendados: barra lateral primária
No comments:
Post a Comment